Fractional Operation Specification
This evaluator allows to split the returned variants of a feature flag into different buckets, where each bucket can be assigned a percentage, representing how many requests will resolve to the corresponding variant.
The sum of all weights must be 100
, and the distribution must be performed by using the value of a referenced
from the evaluation context to hash that value and map it to a value between [0, 100]. It is important to note
that evaluations MUST be sticky, meaning that flag resolution requests containing the same value for the
referenced property in their context MUST always resolve to the same variant. For calculating the hash value of the
referenced evaluation context property, the MurmurHash3
hash function should be used. This is to ensure that flag resolution requests yield the same result,
regardless of which implementation of the in-process flagd provider is being used.
The supplied array must contain at least two items, with the first item being an optional json logic variable declaration
specifying the bucketing property to base the distribution of values on. If the bucketing property expression doesn't return a string, a concatenation of the
flagKey
and targetingKey
are used: {"cat": [{"var":"$flagd.flagKey"}, {"var":"targetingKey"}]}
.
The remaining items are arrays
, each with two values, with the first being string
item representing the name of the variant, and the
second being a float
item representing the percentage for that variant. The percentages of all items must add up to
100.0, otherwise unexpected behavior can occur during the evaluation. The data
object can be an arbitrary
JSON object. Below is an example of a targeting rule containing a fractional
:
{
"$schema": "https://flagd.dev/schema/v0/flags.json",
"flags": {
"headerColor": {
"variants": {
"red": "#FF0000",
"blue": "#0000FF",
"green": "#00FF00"
},
"defaultVariant": "red",
"state": "ENABLED",
"targeting": {
"fractional": [
{"var":"email"},
[
"red",
50
],
[
"blue",
20
],
[
"green",
30
]
]
}
}
}
}
Please note that the implementation of this evaluator can assume that instead of {"var": "email"}
, it will receive
the resolved value of that referenced property, as resolving the value will be taken care of by JsonLogic before
applying the evaluator.
The following flow chart depicts the logic of this evaluator:
flowchart TD
A[Parse targetingRule] --> B{Is an array containing at least one item?};
B -- Yes --> C{Does expression at index 0 return a string?};
B -- No --> D[return null]
C -- No --> E[bucketingPropertyValue := default to targetingKey];
C -- Yes --> F[bucketingPropertyValue := targetingRule at index 0];
E --> G[Iterate through the remaining elements of the targetingRule array and parse the variants and their percentages];
F --> G;
G --> H{Parsing successful?};
H -- No --> D;
H -- Yes --> I{Does percentage of variants add up to 100?};
I -- No --> D;
I -- Yes --> J[hash := murmur3Hash of bucketingPropertyValue divided by Int64.MaxValue]
J --> K[Iterate through the variant and increment the threshold by the percentage of each variant. Return the first variant where the bucket is smaller than the threshold.]
As a reference, below is a simplified version of the actual implementation of this evaluator in Go.
type fractionalEvaluationDistribution struct {
variant string
percentage int
}
/*
values: contains the targeting rule object; e.g.:
[
{"var":"email"},
[
"red",
50
],
[
"blue",
20
],
[
"green",
30
]
]
data: contains the evaluation context; e.g.:
{
"email": "test@faas.com"
}
*/
func FractionalEvaluation(values, data interface{}) interface{} {
// 1. Check if the values object contains at least two elements:
valuesArray, ok := values.([]interface{})
if !ok {
log.Error("fractional evaluation data is not an array")
return nil
}
if len(valuesArray) < 2 {
log.Error("fractional evaluation data has length under 2")
return nil
}
// 2. Get the target property value used for bucketing the values
valueToDistribute, ok := valuesArray[0].(string)
if !ok {
log.Error("first element of fractional evaluation data isn't of type string")
return nil
}
// 3. Parse the fractional values distribution
sumOfPercentages := 0
var feDistributions []fractionalEvaluationDistribution
// start at index 1, as the first item of the values array is the target property
for i := 1; i < len(valuesArray); i++ {
distributionArray, ok := values[i].([]interface{})
if !ok {
log.Error("distribution elements aren't of type []interface{}")
return nil
}
if len(distributionArray) != 2 {
log.Error("distribution element isn't length 2")
return nil
}
variant, ok := distributionArray[0].(string)
if !ok {
log.Error("first element of distribution element isn't a string")
return nil
}
percentage, ok := distributionArray[1].(float64)
if !ok {
log.Error("second element of distribution element isn't float")
return nil
}
sumOfPercentages += int(percentage)
feDistributions = append(feDistributions, fractionalEvaluationDistribution{
variant: variant,
percentage: int(percentage),
})
}
// check if the sum of percentages adds up to 100, otherwise log an error
if sumOfPercentages != 100 {
log.Error("percentages must sum to 100, got: %d", sumOfPercentages)
return nil
}
// 4. Calculate the hash of the target property and map it to a number between [0, 99]
hashValue := int32(murmur3.StringSum32(value))
hashRatio := math.Abs(float64(hashValue)) / math.MaxInt32
bucket := int(hashRatio * 100)
// 5. Iterate through the variant and increment the threshold by the percentage of each variant.
// return the first variant where the bucket is smaller than the threshold.
rangeEnd := 0
for _, dist := range feDistribution {
rangeEnd += dist.percentage
if bucket < rangeEnd {
// return the matching variant
return dist.variant
}
}
return ""
}